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Abstract 

We introduce a spoken language resource for the analysis of impact that physical exercising has on human speech production. In 
particular, the database provides heart rate and skin conductance measurement information alongside the audio recordings. It contains 
recordings from 19 subjects in a relaxed state and after exercising. The audio material includes breathing, sustained vowels, and read 
text. Further, we describe pre-extracted audio-features from our openSMILE feature extractor together with baseline performances for 
the recognition of high and low heart rate using these features. The baseline results clearly show the feasibility of automatic estimation 
of heart rate from the human voice, in particular from sustained vowels. Both regression - in order to predict the exact heart rate value 
- and a binary classification setting for high and low heart rate classes are investigated. Finally, we give tendencies on feature group 
relevance in the named contexts of heart rate estimation and skin conductivity estimation. 
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1. Introduction 

Audio-based measurement of heart rate or 
skin-conductance has been addressed rather sparsely in 
the literature so far. This is probably due to the fact that at 
first it might appear that heart-rate or skin-conductance 
estimation from speech is unnecessary and complex, as 
there exist simple, reliable sensors, such as small finger 
clips, for measuring both.  

However, in times where telepresence and 
telecommunication gain importance, measuring 
physiological parameters via physically attached sensors 
constitutes an additional overhead. Speech is inherently 
present in such systems, and if physiology parameters can 
be reliably estimated from a normal speech signal, the 
door to many, novel and innovative applications is 
opened.  

Examples include monitoring of physiological 
parameters in the health and safety sector, e.g., in 
emergency calls, or stress level analysis from phone 
conversations, as well as lie detection.  

Orlikoff & Baken (1989) investigated the 
connection between human voice and heartbeat. In their 
study, six male and six female participants were measured 
with an electroglottograph (EGG) during speech 
production. By signal-averaging and autocorrelation, they 
observed that the heartbeat leads to around 0.2% up to 
19% of absolute perturbation of the fundamental 
frequency (jitter) measured on pronunciations of 
sustained vowels.  

In a former study, we evaluated heart rate (HR) and 
skin conductance (SC) prediction as well as a simpler 
high pulse / low pulse (HP/LP) classification based on 
acoustic features (Schuller, Friedmann & Eyben 2013). 
The results base on recordings of breathing, pronunciation 
of sustained vowels and text reading before and after 
physical exercising and are encouraging in the sense that 
general feasibility was shown. To our knowledge, a 
similar study has so far only been attempted for HR in 
vowels by Skopin & Baglikov (2009) and Mesleh & al. 
(2012). For automatic voice-based skin conductance 
assessment no other study is known to us. 

In this contribution we introduce the database that 
served for analyses in (Schuller, Friedmann & Eyben 
2013) in detail and thus make it accessible for future 
studies to the community. We present recordings and 
analyses in detail (Section 2) alongside benchmarks for 
recognition with different machine learning algorithms 
(Section 4). Further, we describe a set of standard audio 
features extracted by our openSMILE toolkit (Eyben & 
al., 2013) and show initial results of feature relevance 
analysis in Section 3. 

2. The Munich Biovoice Corpus 

For the creation of the Munich Biovoice Corpus (MBC 
for short) speech from participants was recorded 
alongside with the physiological parameters heart rate and 
skin-conductance in a synchronised way. Participants 
were recorded in a “neutral”, or low load state and a in a 
high load state after they had performed (physical) 
exercise.  

Wild Divine Inc.’s “iom” device was used to record 
HR and SC data from three sensors attached to a subject’s 
fingers. A Zoom Q3Hd camcorder equipped with an X-Y 
hd microphone was used to record audio (“room 
microphone”) at a sampling rate of 92 kHz in 
uncompressed PCM-wave format. In addition, a Logitech 
Clearchat Headset to capture close-talk speech recordings 
was used. All devices were connected to the same 
recording computer to ensure synchronisation. 

19 subjects (4/15 female/male, 3 Chinese, 15 
German, 1 Italian) participated in the experiment and 
gave their consent to data recording and storage. All were 
free of temporary diseases, but the subjects include 
smokers and such with mild cardiac and neurological 
disorders. All completed a questionnaire about their 
height, weight, nationality and general health condition as 
well as the BFI-10 short personality test by Rammstedt & 
John (2007).  

All subjects were recorded while breathing, while 
pronouncing the sustained vowel /a/ repeatedly and while 
reading a standard text which is used frequently in 
phonetics. These recordings were performed in the two 
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above named physical load states with rather low pulse 
and rather high pulse. The states were clearly defined by 
the activities the participants had to perform.  

Before starting the experiments, the subjects had to 
sit down in front of the recording equipment and they 
were instructed on the procedures. They then had to 
perform a practice recordings session to assure they are 
well familiar with the procedure before the actual 
recording takes start. The time the instructions and the 
practice session took should also ensure that all 
participants were in a low physical load state, i.e. had a 
resting pulse, regardless of their load before entering the 
experiment.  

Then, the actual recording session was started. After 
this first session with low pulse/load, the subjects raised 
their physical load by exercising, i.e., running quickly up 
and down stairs over three stories and running along a 
long hallway which led to the recording room. The 
subjects were required to physically exercise until their 
pulse exceeded 90 BPM. Right after the exercise unit, the 
second recording session was performed. 

In both recording sessions, subjects were recorded 
sitting on a chair in front of a desk. A Zoom Q3Hd was 
placed 50 centimetres from the subjects’ lips; the Logitech 
Clearchat headset was head-worn by the subjects. The 
iom’s heart rate sensor was connected to the left middle 
finger and the two skin conductivity sensors were 
connected to the left ring and forefinger. The subject’s left 
hand was electrically grounded in order to minimize the 
influence of electromagnetic und electrostatic noise in the 
sensors. The iom connected to a subject’s hand is shown 
in Figure 2.  

For each subject, a comfortable frequency Fc for the 
pronunciation of a sustained /a/ vowel was determined 
during the practice phase with visual feedback from a live 
frequency analysis. This frequency Fc was marked on the 
screen, and the subject had to train repeating the /a/ vowel 
in the ‘comfortable’ frequency (/a/c) as precise as possible 
for several times. After the subject was able to 
intentionally produce /a/c within a tolerance of ± 7 Hz 
during 5 subsequent attempts, it was assumed that /a/c 
could be produced reliably during the recording. The 
subject had to undergo the same training procedure for 
/a/l, an /a/ vowel with a frequency Fl which is four semi 
tone levels below the frequency Fc. 

In each of the two recording sessions they had to 

pronounce /a/l and /a/c four times each and then read a 

continuous text aloud. Native German speakers read out 

the text “Der Nordwind und die Sonne”– non-native 

subjects read the English translation of the text “The 

Northwind and the Sun”.  
Figure 1 shows details per subject on the collected 

heart rate (pulse) range during all recordings. The range 
reaches from 22 BPM up to 79 BPM deltas between 
minimum and maximum pulse.  

Overall, the final database consists of heart rate and 
skin conductivity labelled audio recordings from 19 
speakers. The instances are divided into 74 text periods, 
644 breath periods and 630 sustained vowel expressions. 
They are further divided into low pulse and high pulse 
recordings and into headset (close-talk) and Q3Hd 
microphone recordings. Sustained vowels are labelled 
with F0 data and divided into sustained vowels at 
comfortable fundamental frequency (Fc) and sustained 
vowels in low fundamental frequency (Fl).  

In the following, we will shift to calculating 
baselines for feature relevance and obtainable automatic 
classification and regression performances following the 
flow-path shown in Figure 3. and relying on broadly used 
open-source tools available for reproduction. 

3. Features 

openSMILE’s feature set as was designed for the 
INTERSPEECH 2011 Speaker State Challenge (Schuller 
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Figure 2: A subject's hand grounded and 

connected to the iom sensors. 

Figure 1: Range of recorded heart rate values in BPM for each subject: Subject ID (on x-axis, sorted by BPM in 

ascending order from left to right) and sound type: blue/left: Sustained Vowel, orange/right: Breathing. 
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& al. 2011) is considered in this study. The set consists of 

4,368 features built from 4 energy-, 50 spectral- and 5 

voice-related Low Level Descriptors (LLDs) to which 
functionals are applied (see Table 1). On the energy 
related and spectral LLD and their first order deltas, base 
functionals are applied together with min, mean, max and 
the standard derivation of the segment length. On the 
voice related LLD and their first order deltas, the base 
functionals are applied together with quadratic mean, rise 
duration and fall duration of the signal in case of voicing 
probability greater than 0.70. The F0  functionals are 
applied on the F0 LLD and its first order derivate. 

4. Experiments 

Baseline classification experiments are performed to 
evaluate the feasibility of automatic prediction of heart 
rate and skin conductivity from the voice. Further, 
experiments are performed to select meaningful features 
and feature groups that are best suited. 

Support Vector Regression (SVR) is used to predict 
the raw, continuous values for heart rate and skin 
conductivity. SVR with a linear kernel function is used 
and sequential minimal optimisation (SMO) is applied as 

training algorithm as is implemented in the WEKA 
data-mining toolkit (Hall et. al 2009). Next to regression 
analysis, a binary classification task is performed for low 
vs. high pulse (HP/LP) with a linear Support Vector 
Machine (SVM). Experiments are performed on the entire 
sustained vowel data recorded from the headset. A 
randomly selected subset of 2/3 of all data (with WEKA) 
is used for training, the remaining 1/3 of the data are used 
for evaluation in the on-going. 

4.1. Feature selection 

Table 2 shows the results of classification and regression 
performed to examine how recognition accuracy is 
influenced by a reduction of features.  

 

 HP/LP HR SC 

# feat. UA [%] CC CC 

5 67.6 0.54 0.15 

50  82.1 0.69 0.79 

100  86.4 0.84 0.82 

150 91.4 0.75 0.88 

All 75.7 0.72 0.88 

Table 2: Improvement by feature reduction – sustained vowels 

via headset close-talk as acoustic condition. 

The group of employed features was ranked by the 
absolute value of the corresponding weight in the linear 
SVR hyperplane normal vector and reduced to the N 
highest weighted features once for HR and once for SC. 
Using these features, higher accuracies as for 
classification with respect to regression with all features 

Low Level Descriptors (LLD) 
 

Functionals 

4 energy related LLD 

 

33 base functionals 

Sum of auditory spectrum (loudness) 

 

quartiles 1–3 and 3 inter-quartile ranges 

Sum of RASTA-style filtered auditory spectrum 

 

1% percentile (≈min), 99% percentile (≈max) 

RMS Energy 

 

percentile range 1 %–99% 

Zero-Crossing Rate 

 

arithmetic mean, standard deviation 

50 spectral LLD 

 

skewness, kurtosis 

RASTA-style filt. auditory spectrum, bands 1–26 (0–8 kHz) 

 

mean of peak distances 

MFCC 1–12 

 

standard deviation of peak distances, mean value of peaks 

Spectral energy 25–650 Hz, 1 k–4 kHz 

 

mean value of peaks – arithmetic mean 

Spectral Roll Off Point 0.25, 0.50, 0.75, 0.90 

 

linear regression slope and quadratic error 

Spectral Flux, Entropy, Variance, Skewness, Kurtosis, Slope 

 

quadratic regression a and b and quadratic error 

5 voice related LLD 

 

contour centroid 

F0 

 

duration signal is below 25% range / above 90% range 

Probability of voicing 

 

duration signal is rising/falling 

Jitter (local, delta) 

 

gain of linear prediction (LP) 

Shimmer (local) 

 

LP Coefficients 1–5 

 
 

6 F0 functionals 

 
 

percentage of non-zero frames 

 
 

mean, max, min, std. dev. of segment length 

 
 

input duration in seconds 

Table 1: Low Level Descriptors and functionals of the INTERSPEECH 2011 Speaker State Challenge feature set. 

Figure 3: Steps of data processing. 
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could be reached. With the 150 highest-weighted features 
selected, an unweighted accuracy (UA) of 91.4% could be 
reached for HP/LP classification and a correlation 
coefficient (CC) of .876 for SC recognition. For HR a CC 
of .838 was achieved with the top 100 features. It is to 
note, however, that these results are speaker dependent, 
i.e., that data from the same speaker is contained in the 
training and the test set.  

4.2. Feature Group Relevance 

Feature groups that have been compared are shown in 
Figure 4: Two energy-related feature groups based on the 
zero-crossing rate and the root mean square energy (PCM 
features), the sum of auditory spectrum band energies 
resembling loudness (AudSpec features), spectral-related 
features based on Mel Frequency Ceptral Coefficients 
(MFCCs), as well as voicing related feature groups based 
on jitter, shimmer, fundamental frequency (F0 features, 
cf. also (Johannes & al. 2007), and probability of voicing 
(Voicing features). For comparison, the single weights of 
a group’s features among the top 150 features were 
summed and divided by the sum of the top 150 features’ 
weights to provide a measure for relevance assigned to the 
features by the classifier. In total, voice-quality related 
features account for 4% to 18% of the top 150 features 
when employing a random 2/3 to 1/3 split between 
training and test data, respectively. In the same setting, the 
MFCC group accounts for 31% to 70%, auditory 
spectrum features for 14% to 38% and signal-based 
features for 11% to 23% of the top 150 features.  
 

Recognition method CC MAE 

ANN .768 12.3 

Simple linear regression .423 15.2 

LMSLR .776 10.1 

Linear regression .781 10.9 

SVR, RBF kernel .748 10.7 

SVR, quadratic .809 10.0 

SVR, linear .838 9.1 

Table 3: Comparison of recognition methods for HR on 

sustained vowels from the headset close-talk microphone based 

on the top 100 features. ANN: Artificial Neural Network, 

LMSLR: Least Median Squared Linear Regression, MAE: 

Mean Absolute Error, SVR: Support Vector Regression. 

4.3. Choice of the Machine Learning Algorithm 

Besides the linear kernel SVR and SVM, other machine 

learning methods have been investigated for the heart-rate 

task using the full feature set. Table 3 shows how the 

accuracy depends on the machine learning algorithm in 

this case. Different regressors were compared to linear 

SVR, which had achieved particularly good HR 

recognition rates when the number of features was 

reduced to the top 150 features as described in Section 

3.1.  

While a linear kernel was optimal in that case, a Radial 

Basis Function (RBF) kernel achieved a higher accuracy 

for the full feature set. Overall, one can see that the best 

results were obtained with SVR as compared to the 

considered alternatives. 
 

 

Figure 4: Feature group relevance. Top: heart rate in continuous 

beats per minute. Bottom: continuous skin conductance level as 

target. Shown are results for close-talk (C) or room microphone 

(R) for sustained vowels (V) or breathing periods (B). 

5. Conclusion 

We have introduced the Munich Biovoice Corpus (MBC) 
in this paper. Thereby the recording conditions have been 
described in detail, as well as the audio data and the labels 
contained in the corpus. Baseline results were shown, 
which – for speaker dependent settings – show very good 
performance when using 150 features automatically 
selected from a large, standard acoustic feature set of 
more than 4k features. As for feature group relevance, we 
found MFCC-type features and auditory spectrum-based 
ones particularly relevant. In a comparison of different 
classifiers, Support Vector-type algorithms prevailed.  

The corpus is publicly available upon request from 
the authors. In future work we aim to further exploit 
different segmentations of the free text parts of the 
recordings. We also consider voice-based analysis of 
further bio-signals such as blood pressure (Broadwater 
2002). Next, it will be interesting to analyse 
voice-induced heart rate (Kisilevsky & Hains 2011) and 
interdependence with pathologies (cf. (Baumgartner & 
Brutten 1982) or (Olsen & Strohl, 1987)). In particular, 
we aim to invite the research community to compare their 
results on the data in a well-formalised evaluation 
campaign (Schuller & al., 2014). Finally, comparison with 
other data and studies of speech and physical stress will be 
of interest (cf., e.g., the UT-Scope database (Godin & 
Hansen 2011) or (Meckel, Rotstein & Inbar 2002)). 
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